alexa Manipulation of host behaviour by Toxoplasma gondii: what is the minimum a proposed proximate mechanism should explain?
Psychiatry

Psychiatry

Abnormal and Behavioural Psychology

Author(s): Vyas A, Sapolsky R

Abstract Share this page

Abstract The behavioural manipulation hypothesis posits that parasites can change the behaviour of hosts to increase the reproductive fitness of the parasite. The protozoan parasite Toxoplasma gondii fits this description well. Sexual reproduction occurs in the cat intestine, from which highly stable oocysts are excreted in faeces. Grazing animals, including rodents, can then ingest these oocysts. The parasite has evolved the capacity to abolish the innate fear that rodents have of the odours of cats, and to convert that fear into an attraction. This presumably increases the likelihood of the rodent being predated, thereby completing the parasite's life cycle. The behavioural syndrome produced by T. gondii does not have any precedent in neuroscience research. This is not a case where the normal functioning of fear system have been altered. This is not even the case of the altering of fear towards predator odours, while leaving other kinds of fear intact. This is an unprecedented example of one component of the fear being eliminated (and replaced by a novel attraction), while appearing to leave other domains unchanged. An understanding of the neurobiological effects of T. gondii is beginning to emerge. One possibility is T. gondii's preferential localisation to, and effects within the amygdala; this is particularly intriguing, given the role of this brain structure in the normal fear response. Obviously, far more must be understood, and the unique behavioural effects of T. gondii put very demanding constraints on any hypothesis we formulate to explain proximate neurobiological mechanisms.
This article was published in Folia Parasitol (Praha) and referenced in Abnormal and Behavioural Psychology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords