alexa Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Chang L, Yakupov R, Cloak C, Ernst T

Abstract Share this page

Abstract Attention and memory deficits have been reported in heavy marijuana users, but these effects may be reversible after prolonged abstinence. It remains unclear whether the reversibility of these cognitive deficits indicates that chronic marijuana use does not alter cortical networks, or that such changes occur but the brain adapts to the drug-induced changes. Blood oxygenation-level dependent (BOLD) functional MRI (fMRI) was performed in 24 chronic marijuana users (12 abstinent and 12 active) and 19 age-, sex- and education-matched control subjects during a set of visual-attention tasks with graded levels of difficulty. Neuropsychological tests were also administered on each subject. The two marijuana user groups showed no significant difference in usage pattern (frequency or duration of use, age of first use, cumulative joints used, averaged >2000 joints) or estimated cumulative lifetime exposure of Delta-9-tetrahydrocannabinol (THC) (mean 168 +/- 45 versus 244 +/- 135 g). Despite similar task and cognitive test performance compared with control subjects, active and abstinent marijuana users showed decreased activation in the right prefrontal, medial and dorsal parietal, and medial cerebellar regions, but greater activation in various frontal, parietal and occipital brain regions during the visual-attention tasks (all with P < or = 0.001, corrected, cluster level). However, the BOLD signals in the right frontal and medial cerebellar regions normalized with duration of abstinence in the abstinent users. Active marijuana users, with positive urine tests for THC, showed greater activation in the frontal and medial cerebellar regions than abstinent marijuana users and greater usage of the reserve network (regions with load effect), suggesting a neuroadaptive state. Both earlier age of first use and greater estimated cumulative dose of THC exposure were related to lower BOLD signals in the right prefrontal region and medial cerebellum. The altered BOLD activation pattern in the attention network and hypoactivation of the cerebellum suggest neuroadaptive processes or alteration of brain development in chronic marijuana users. These changes also may be related to marijuana-induced alteration in resting cerebral blood volume/flow or downregulation of cannabinoid (CB1) receptors. The greater activation in the active compared with abstinent marijuana users demonstrates a neuroadaptive state in the setting of active marijuana use, while the long-term chronic effect of marijuana on the altered brain network may be reversible with prolonged abstinence. This article was published in Brain and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords