alexa Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus.
Molecular Biology

Molecular Biology

Cell & Developmental Biology

Author(s): Zhang TY, Hellstrom IC, Bagot RC, Wen X, Diorio J,

Abstract Share this page

Abstract Parenting and the early environment influence the risk for various psychopathologies. Studies in the rat suggest that variations in maternal care stably influence DNA methylation, gene expression, and neural function in the offspring. Maternal care affects neural development, including the GABAergic system, the function of which is linked to the pathophysiology of diseases including schizophrenia and depression. Postmortem studies of human schizophrenic brains have revealed decreased forebrain expression of glutamic acid decarboxylase 1 (GAD1) accompanied by increased methylation of a GAD1 promoter. We examined whether maternal care affects GAD1 promoter methylation in the hippocampus of adult male offspring of high and low pup licking/grooming (high-LG and low-LG) mothers. Compared with the offspring of low-LG mothers, those reared by high-LG dams showed enhanced hippocampal GAD1 mRNA expression, decreased cytosine methylation, and increased histone 3-lysine 9 acetylation (H3K9ac) of the GAD1 promoter. DNA methyltransferase 1 expression was significantly higher in the offspring of low- compared with high-LG mothers. Pup LG increases hippocampal serotonin (5-HT) and nerve growth factor-inducible factor A (NGFI-A) expression. Chromatin immunoprecipitation assays revealed enhanced NGFI-A association with and H3K9ac of the GAD1 promoter in the hippocampus of high-LG pups after a nursing bout. Treatment of hippocampal neuronal cultures with either 5-HT or an NGFI-A expression plasmid significantly increased GAD1 mRNA levels. The effect of 5-HT was blocked by a short interfering RNA targeting NGFI-A. These results suggest that maternal care influences the development of the GABA system by altering GAD1 promoter methylation levels through the maternally induced activation of NGFI-A and its association with the GAD1 promoter. This article was published in J Neurosci and referenced in Cell & Developmental Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version