alexa Mathematical model indicates nonlinearity of noradrenaline effect on rat renal artery.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Clinical & Experimental Pharmacology

Author(s): Durisov M, Dedk L, Kristov V, Vojtko R

Abstract Share this page

Abstract The aim of this work is to present the efficacy of a previously introduced computational procedure, developed for evaluation of vascular responsiveness. On this reason, as an example a common study of noradrenaline (NA) effect on a rat renal artery under in vitro conditions was arbitrarily selected. The response of the arterial segment to NA doses (0.1-10 microg) was digitally recorded on a PC and employed to develop mathematical model of NA effect. Using the model, the following NA effect variables were determined: the vessel sensitivity parameter, mean effect time and rate constant, respectively, characterizing the effect intensity, duration, and regression and also classic response variables: the maximal effect and time of the maximal effect. The two-way analysis of variance followed by Bonferroni's test revealed a significant influence of the increasing NA dose on the vessel sensitivity parameter and mean effect time. These findings indicated nonlinearity of processes underlying NA effect on the rat renal artery over the given range of NA doses. The procedure exemplified has the potential for use as an effective adjunct to routine studies of vascular responsiveness as it enables the extraction of meaningful information which cannot by obtained by common manual evaluation procedures.
This article was published in Physiol Res and referenced in Journal of Clinical & Experimental Pharmacology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords