alexa Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals.
Genetics

Genetics

Advancements in Genetic Engineering

Author(s): Yeo G, Burge CB

Abstract Share this page

Abstract We propose a framework for modeling sequence motifs based on the maximum entropy principle (MEP). We recommend approximating short sequence motif distributions with the maximum entropy distribution (MED) consistent with low-order marginal constraints estimated from available data, which may include dependencies between nonadjacent as well as adjacent positions. Many maximum entropy models (MEMs) are specified by simply changing the set of constraints. Such models can be utilized to discriminate between signals and decoys. Classification performance using different MEMs gives insight into the relative importance of dependencies between different positions. We apply our framework to large datasets of RNA splicing signals. Our best models out-perform previous probabilistic models in the discrimination of human 5' (donor) and 3' (acceptor) splice sites from decoys. Finally, we discuss mechanistically motivated ways of comparing models. This article was published in J Comput Biol and referenced in Advancements in Genetic Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • International Conference on Epigenetics 2017
    November 13-15, 2017 Frankfurt, Germany
  • International Conference on Genetic Counseling and Genomic Medicine
    February 12-13, 2018 Madrid, Spain

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords