alexa Measure representation and multifractal analysis of complete genomes.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Yu ZG, Anh V, Lau KS

Abstract Share this page

Abstract This paper introduces the notion of measure representation of DNA sequences. Spectral analysis and multifractal analysis are then performed on the measure representations of a large number of complete genomes. The main aim of this paper is to discuss the multifractal property of the measure representation and the classification of bacteria. From the measure representations and the values of the D(q) spectra and related C(q) curves, it is concluded that these complete genomes are not random sequences. In fact, spectral analyses performed indicate that these measure representations, considered as time series, exhibit strong long-range correlation. Here the long-range correlation is for the K-strings with dictionary ordering, and it is different from the base pair correlations introduced by other people. For substrings with length K=8, the D(q) spectra of all organisms studied are multifractal-like and sufficiently smooth for the C(q) curves to be meaningful. With the decreasing value of K, the multifractality lessens. The C(q) curves of all bacteria resemble a classical phase transition at a critical point. But the "analogous" phase transitions of chromosomes of nonbacteria organisms are different. Apart from chromosome 1 of C. elegans, they exhibit the shape of double-peaked specific heat function. A classification of genomes of bacteria by assigning to each sequence a point in two-dimensional space (D(-1),D1) and in three-dimensional space (D(-1),D1,D(-2)) was given. Bacteria that are close phylogenetically are almost close in the spaces (D(-1),D1) and (D(-1),D1,D(-2)). This article was published in Phys Rev E Stat Nonlin Soft Matter Phys and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords