alexa Measurement error and confidence intervals for ROC curves.


Journal of Biometrics & Biostatistics

Author(s): Tosteson TD, Buonaccorsi JP, Demidenko E, Wells WA

Abstract Share this page

Abstract Measurement error in a continuous test variable may bias estimates of the summary properties of receiver operating characteristics (ROC) curves. Typically, unbiased measurement error will reduce the diagnostic potential of a continuous test variable. This paper explores the effects of possibly heterogenous measurement error on estimated ROC curves for binormal test variables. Corrected estimators for specific points on the curve are derived under the assumption of known or estimated measurement variances for individual test results. These estimators and associated confidence intervals do not depend on normal assumptions for the distribution of the measurement error and are shown to be approximately unbiased for moderate size samples in a simulation study. An application from a study of emerging imaging modalities in breast cancer is used to demonstrate the new techniques.
This article was published in Biom J and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version