alexa Measurement of 129Xe T1 in blood to explore the feasibility of hyperpolarized 129Xe MRI.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Albert MS, Schepkin VD, Budinger TF

Abstract Share this page

Abstract OBJECTIVE: The major obstacle to the use of 129-xenon (I = 1/2) as a new source of contrast in magnetic resonance is its low sensitivity. The hyperpolarized 129Xe-MRI technique using laser optical pumping of rubidium promises to resolve this problem. The potential of xenon-based MRI for the body tissues other than the lung air spaces depends on the 129Xe polarization lifetime (T1) in the blood at a magnetic field of commonly available clinical MRI systems. MATERIALS AND METHODS: Xenon with natural abundance of 129Xe (26\%) was dissolved in human blood and studied at 36 degrees C in a 2.35 T 40 cm bore MRI spectrometer (27.6 MHz). Zeeman relaxation (T1) of six blood samples was measured by the progressive saturation method for periods of 4-8 h each. RESULTS: NMR spectra revealed two peaks at 216.0 ppm (A) and 194.0 ppm (B) relative to the xenon gas above the blood volume. Assignment and 129Xe T1 values were 4.5 +/- 1 s for red blood cells (A), 9.6 +/- 2 s for plasma (B) and 11.9 +/- 1.6 s for xenon gas at atmospheric oxygen pressure. Xenon dissolved in distilled water appears at 189.8 ppm and has T1 = 26.3 +/- 1.4 s. CONCLUSION: These relaxation times, though shorter than expected, are comparable to the transport time of blood, and are long enough to encourage use of hyperpolarized xenon for MRI studies in tissues, in addition to lung.
This article was published in J Comput Assist Tomogr and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords