alexa Measurement of the digit lengths and the anogenital distance in mice.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Manno FA rd

Abstract Share this page

Abstract In humans, research has demonstrated the ratio of the 2nd to 4th digit lengths (2D:4D) are: (i) sexually dimorphic with males having a lower ratio than females, the latter having near equidistant lengths [J. Manning, D. Scutt, J. Wilson, & D. Lewis-Jones, (1998). The ratio of 2nd to 4th digit length: a predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Hum Reprod. 13(11):3000-3004], and are theorized to be (ii) determined in utero during gestational development [J. Manning, & P. Bundred, (2000). The ratio of 2nd to 4th digit length: a new predictor of disease predisposition? Med Hypotheses. 54(5):855-857], and (iii) correlated with prenatal androgen levels [J. Manning, & P. Bundred, (2000). The ratio of 2nd to 4th digit length: a new predictor of disease predisposition? Med Hypotheses. 54(5):855-857; J. Manning, R. Trivers, D. Singh, & R. Thornhill, (1999). The mystery of female beauty. Nature. 399:214-215; T. Williams, M. Pepitone, S. Christensen, B. Cooke, A. Huberman, N. Breedlove, et al., (2000). Finger-length ratios and sexual orientation: measuring people's finger patterns may reveal some surprising information. Nature. 404:455-456]. These phenotypes correspond to the hormonal effects of testosterone (i.e. androgens) in utero in both sexes. In mice, testosterone in utero is associated in males and females with the anogenital distance (AGD), a phenotype where AGD is greater in males and females contiguous with two males (2M) have a masculinized AGD phenotype whereas those juxtaposed to fewer males, one or zero (1M or 0M), have a more feminine phenotype, i.e. shorter AGD [F. vom Saal, & F. Bronson, (1980). Sexual characteristics of adult female mice are correlated with their blood testosterone levels during prenatal development. Science. 208:597-599; R. Gandelman, F. vom Saal, & J. Reinisch, (1977). Contiguity to male foetuses affects morphology and behaviour of female mice. Nature. 266:722-724; A. Hotchkiss, & J. Vandenbergh, (2005). The anogenital distance index of mice (Mus musculus domesticus): an analysis. Contem Top Lab Anim Sci. 44(4):46-48; C. Kinsley, J. Miele, C. Wagner, L. Ghiraldi, J. Broida, B. Svare, (1986). Prior intrauterine position influences body weight in male and female mice. Horm Behav. 20:201-211; S. Graham, R. Gandelman, (1986). The expression of ano-genital distance data in the mouse. Physiol Behav. 36(1):103-104; B. Ryan, & J. Vandenbergh, (2002). Intrauterine position effects. Neurosci Biobehav Rev. 26(6):665-678; J. Vandenbergh, & C. Huggett, (1995). The anogenital distance index, a predictor of the intrauterine position effects on reproduction in female house mice. Lab Anim Sci. 45(5):567-573]. Furthermore, in humans AGD is sexually dimorphic with neonate males having a greater distance than females [E. Salazar-Martinez, P. Romano-Riquer, E. Yanez-Marquez, M. Longnecker, M. Hernandez-Avila, (2004). Anogenital distance in human male and female newborns: a descriptive, cross-sectional study. Environmental Health: A Global Access Science Source. 2004:3:(8) (doi:10.1186/1476-069X-3-8) [12]]. Recently, research has concluded that the digit lengths of mice have the same phenotypic pattern seen in humans, with the 2D:4D ratio being sexually dimorphic, i.e. lower in males and greater in females [W. Brown, C. Finn, & S. Breedlove, (2002). Sexual dimorphism in digit-length ratios of laboratory mice. Anat Rec. 267(3):231-234; J. Manning, M. Callow, & P. Bundred, (2003). Finger and toe ratios in humans and mice: implications for the aetiology of diseases influenced by HOX genes. Med Hypotheses. 60(3):340-343; W. Brown, C. Finn, & S. Breedlove, (2001). A sex difference in the digit length ratio in mice. Horm Behav. 39:325]. The following study was conducted to determine whether the digit length ratios in mice are correlated with a known in utero testosterone-dependent effect, the distance from the anus to the genital papilla, the AGD. The results of the experiment demonstrate that there is no correlation between AGD and the 2D:4D ratio in mice of either sex. Furthermore, no sexual dimorphism in the digit lengths was found as opposed to previous studies [W. Brown, C. Finn, & S. Breedlove, (2002). Sexual dimorphism in digit-length ratios of laboratory mice. Anat Rec. 267(3):231-234; J. Manning, M. Callow, & P. Bundred, (2003). Finger and toe ratios in humans and mice: implications for the aetiology of diseases influenced by HOX genes. Med Hypotheses. 60(3):340-343; W. Brown, C. Finn, & S. Breedlove, (2001). A sex difference in the digit length ratio in mice. Horm Behav. 39:325]. Although testosterone has been implicated in the digit length ratios, the present study would suggest that androgens do not have a causal relationship with testosterone-dependent phenotypes [J. Manning, D. Scutt, J. Wilson, & D. Lewis-Jones, (1998). The ratio of 2nd to 4th digit length: a predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Hum Reprod. 13(11):3000-3004; J. Manning, & P. Bundred, (2000). The ratio of 2nd to 4th digit length: A new predictor of disease predisposition?. Med Hypotheses. 54(5):855-857; J. Manning, R. Trivers, D. Singh, & R. Thornhill, (1999). The mystery of female beauty. Nature. 399:214-215]. The attribution of nature (i.e. genetic) and nurture (i.e. environment) in the development of life (i.e. resultant phenotype) is exceedingly complex and the correlation of one trait to another physical characteristic does not preclude there is a causal relationship. This article was published in Physiol Behav and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords