alexa Mechanical and physiochemical determinants of the chondrocyte biosynthetic response.


General Medicine: Open Access

Author(s): Gray ML, Pizzanelli AM, Grodzinsky AJ, Lee RC

Abstract Share this page

Abstract The relation between mechanical loading of cartilage and chondrocyte activity in vivo may be mediated by several physical transduction mechanisms including: cell deformation, hydrostatic pressure gradients, fluid flow, streaming currents, and physicochemical changes. We have developed an organ culture system designed to study chondrocyte biosynthetic response to such physical stimuli. This study focuses on the effects of static compression and physicochemical changes. Cartilage disks harvested from the reserve zone of the epiphyseal plate of 1-2-week-old calves were subjected to static compressive stresses of 0-3 MPa in unconfined compression and the incorporation of [35S]sulfate and [3H]proline was measured during the 12-h loading period. Incorporation of both proline and sulfate decreased monotonically with increasing stress. Compressive loading also produces physicochemical changes including a decreased water content and increased matrix fixed-charge density, with a concomitant increase in interstitial counterion concentrations (e.g., K+, H+) and decreased coion concentrations (e.g., SO4(2-). We therefore examined the possibility that specific changes in interstitial mobile ion concentrations may be linked to chondrocyte response to static compression by measuring biosynthesis in the absence of mechanical compression while independently altering the SO4(2-), K+, and H+ composition of the bathing medium. We found that proline and sulfate incorporation were strongly dependent on pH, but independent of [SO4(2-)] and [K+] in the range studied. These results suggest that compression-induced changes in local, interstitial pH may account for the observed biosynthetic response to static compression. This article was published in J Orthop Res and referenced in General Medicine: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version