alexa Mechanical loads at the knee joint during deep flexion.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Nagura T, Dyrby CO, Alexander EJ, Andriacchi TP

Abstract Share this page

Abstract There is a lack of fundamental information on the knee biomechanics in deep flexion beyond 90 degrees. In this study, mechanical loads during activities requiring deep flexion were quantified on normal knees from 19 subjects, and compared with those in walking and stair climbing. The deep flexion activities generate larger net quadriceps moments (6.9-13.5\% body weight into height) and net posterior forces (58.3-67.8\% body weight) than routine ambulatory activities. Moreover, the peak net moments and the net posterior forces were generated between 90 degrees and 150 degrees of flexion. The large moments and forces will result in high stress at high angles of flexion. These loads can influence pathological changes to the joint and are important considerations for reconstructive procedures of the knee. The posterior cruciate ligament should have a substantial role during deep flexion, since there was a large posterior load that must be sustained at the knee. The mechanics of the knee in deep flexion are likely a factor causing problems of posterior instability in current total knee arthroplasty. Thus, it is important to consider the magnitude of the loads at the knee in the treatment of patients that commonly perform deep flexion during activities of daily living. This article was published in J Orthop Res and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]m

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords