alexa Mechanical stimulation initiates cell-to-cell calcium signaling in ovine lens epithelial cells.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Churchill GC, Atkinson MM, Louis CF

Abstract Share this page

Abstract Although abnormalities in calcium regulation have been implicated in the development of most forms of cataract, the mechanisms by which Ca2+ is regulated in the cells of the ocular lens remain poorly defined. Cell-to-cell Ca2+ signaling was investigated in primary cultures of ovine epithelial cells using the Ca(2+)-reporter dye fura-2 and fluorescence microscopy. Mechanical stimulation of a single cell with a micropipette initiated a propagated increase in cytosolic free Ca2+ that spread from the stimulated cell through 2-8 tiers of surrounding cells. During this intercellular Ca2+ wave, cytosolic Ca2+ increased 2- to 12-fold from resting levels of approximately 100 nM. Nanomolar extracellular Ca2+ did not affect the cell-to-cell propagation of the Ca2+ wave, but reduced the magnitude of the cytosolic Ca2+ increases, which was most evident in the mechanically-stimulated cell. Depletion of intracellular Ca2+ stores with thapsigargin eliminated the propagated intercellular Ca2+ wave, but did not prevent the cytosolic Ca2+ increase in the mechanically-stimulated cell, which required extracellular Ca2+ and was attenuated by the addition of the Ca2+ channel blockers Ni2+, Gd3+ and La3+ to the medium. These results are most easily explained by a mechanically-activated channel in the plasma membrane of the stimulated cell. The propagated increase in cytosolic Ca2+ appeared to be communicated to adjacent cells by the passage of an intracellular messenger other than Ca2+ through gap junction channels. However, if the plasma membrane of the mechanically-stimulated cell was ruptured such that there was loss of cytosolic contents, the increase in cytosolic Ca2+ in the surrounding cells was elicited by both a messenger passing through gap junction channels and by a cytosolic factor(s) diffusing through the extracellular medium. These results demonstrate the existence of intercellular Ca2+ signaling in lens cells, which may play a role in regulating cytosolic Ca2+ in the intact lens.
This article was published in J Cell Sci and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords