alexa Mechanism and fidelity of HIV reverse transcriptase.
Immunology

Immunology

HIV: Current Research

Author(s): Kati WM, Johnson KA, Jerva LF, Anderson KS, Kati WM, Johnson KA, Jerva LF, Anderson KS

Abstract Share this page

Abstract We have examined the RNA-dependent and DNA-dependent polymerase and ribonuclease H catalytic activities of human immunodeficiency virus reverse transcriptase using rapid transient kinetic methods with defined synthetic 25/45-mer DNA/RNA and DNA/DNA primer/templates. The Kd value for interaction of the enzyme with duplex DNA was 4.7 nM, and the value for RNA/DNA heteroduplex was of similar magnitude. A pre-steady state burst of nucleoside triphosphate incorporation was observed for both DNA and RNA templates. Analysis of the dATP concentration dependence of the burst rate provided Kd values for dATP of 4 and 14 microM and maximum rates of single nucleotide incorporation, kpol, of 33 and 74 s-1, for DNA and RNA templates, respectively. Subsequent turnovers were limited by the rate of dissociation of the primer/template from the enzyme at rates of 0.18 and 0.06 s-1 for duplex DNA and RNA/DNA heteroduplex, respectively. Analysis of rates of DNA polymerization and RNA cleavage using the RNA template revealed that the two activities are independent of one another. The polymerization rate (4-70 s-1) was dependent on dATP concentration, whereas the RNA cleavage occurred at a constant rate of 10 s-1 over the 100-fold dATP concentration range (2-200 microM). Examination of the RNA cleavage products resulting from a single turnover indicates that the polymerase and ribonuclease domains of the enzyme are separated by a distance corresponding to 19 bases of RNA/DNA heteroduplex, consistent with the recently published crystal structure (Kohlstaedt, L. A., Wang, J., Friedman, J., Rice, P. A., and Steitz, T. A. (1992) Science 256, 1783-1790). Analysis of the kinetics of processive synthesis suggested that the initial binding of dNTP leads to a faster rate of dissociation of DNA from the enzyme. Further investigation supported a two-step dNTP binding mechanism with the formation of an initial E.DNA.dNTP complex followed by a more stable E'.DNA.dNTP complex. The Kd values for incorporation of incorrect nucleoside triphosphates opposite a DNA template thymidine were 1010 microM for dGTP, 1240 microM for dCTP, and 840 microM for dTTP. The corresponding maximum kpol rates were 4.8 s-1 for dGTP, 0.52 s-1 for dCTP, and 0.41 s-1 for dTTP. These values provide fidelity estimates of 1740 for discrimination against dGTP, 19,700 for dCTP, and 16,900 for dTTP misincorporations at this site.
This article was published in J Biol Chem and referenced in HIV: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords