alexa Mechanism of chemical manipulation of the heat resistance of Clostridium perfringens spores.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Ando Y, Tsuzuki T

Abstract Share this page

Abstract The mechanism of chemical manipulation of the heat resistance of Clostridium perfringens type A spores was studied. Spores were converted to various ionic forms to base-exchange technique and these spores were heated at 95 degrees C. Of the four ionic forms, i.e. Ca2+, Na+, H+ and native, only hydrogen spores appeared to have been rapidly inactivated at this temperature, when survivors were enumerated on the ordinary plating medium. However, the recovery of the survivors was improved when the plating medium was supplemented with lysozyme, and more dramatically when the heated spores were pretreated with alkali followed by plating in the medium containing lysozyme. In contrast to crucial damage to germination, in particular to spore lytic enzyme, no appreciable amount of DPA was released from the heat-damaged H-spores. These results suggest that a germination system is involved in the thermal inactivation of the ionic forms of spores, and that exchangeable cation load plays a role in protection from thermal damage of the germination system within the spore. An enhancement of thermal stability of spore lytic enzyme in the presence of a high concentration of NaCl was consistent with the hypothesis.
This article was published in J Appl Bacteriol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords