alexa Mechanism of minus strand strong stop transfer in HIV-1 reverse transcription
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Chen Y

Abstract Share this page

Retrovirus minus strand strong stop transfer (minus strand transfer) requires reverse transcriptase-associated RNase H, R sequence homology, and viral nucleocapsid protein. The minus strand transfer mechanism in human immunodeficiency virus-1 was examined in vitro with purified protein and substrates. Blocking donor RNA 5'-end cleavage inhibited transfers when template homology was 19 nucleotides (nt) or less. Cleavage of the donor 5'-end occurred prior to formation of transfer products. This suggests that when template homology is short, transfer occurs through a primer terminus switch-initiated mechanism, which requires cleavage of the donor 5' terminus. On templates with 26-nt and longer homology, transfer occurred before cleavage of the donor 5' terminus. Transfer was unaffected when donor 5'-end cleavages were blocked but was reduced when internal cleavages within the donor were restricted. Based on the overall data, we conclude that in human immunodeficiency virus-1, which contains a 97-nt R sequence, minus strand transfer occurs through an acceptor invasion-initiated mechanism. Transfer is initiated at internal regions of the homologous R sequence without requiring cleavage at the donor 5'-end. The acceptor invades at gaps created by reverse transcriptase-RNase H in the donor-cDNA hybrid. The fragmented donor is eventually strand-displaced by the acceptor, completing the transfer.

This article was published in J Biol Chem and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords