alexa Mechanisms by which extracellular matrix components induce osteoblast apoptosis.
Engineering

Engineering

Bioceramics Development and Applications

Author(s): Adams CS, Shapiro IM

Abstract Share this page

Abstract Bone cell apoptosis is seen at sites of active turnover. We hypothesize that at these sites, factors released from resorbing bone induce apoptosis of vicinal cells. Related to this observation, earlier studies indicate that an elevation in the level of inorganic phosphate ions combined with a modest increase in the calcium (Ca2+) concentration, or a rise in the local concentration of RGD-containing peptides promote osteoblast apoptosis. The aim of the current investigation is to elucidate the mechanism by which these extracellular matrix components induce bone cell apoptosis. The data presented in this study clearly demonstrate that osteoblasts are sensitive to peptide fragments and solubilized mineral ions. It is reasonable to expect that these apoptogens would be generated by osteoclasts during resorption of the extracellular bone matrix. We suggest that these components conspire to regulate bone cell function. In terms of the mechanism by which these agents activate apoptosis, it is clear that while they share common pathways, there are some differences in the mechanism of apoptosis. These differences appear to be upstream of caspase activation. The observation that two such pathways exist lends strength to the notion that apoptosis is carefully regulated in bone and that signals from both matrix components act together to trigger the remodeling process.
This article was published in Connect Tissue Res and referenced in Bioceramics Development and Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version