alexa Mechanisms mediating oxalate-induced alterations in renal cell functions.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Jonassen JA, Cao LC, Honeyman T, Scheid CR

Abstract Share this page

Abstract Oxalate is a major component of the most common form of kidney stones--calcium oxalate stones. High concentrations of oxalate promote stone formation in two ways: (1) by providing urinary conditions favorable to the formation of calcium oxalate crystals, and (2) by inducing renal injury that generates cellular debris and promotes crystal nucleation and attachment. Oxalate toxicity is mediated in part by activation of lipid signaling pathways that produce arachidonic acid, lysophospholipids, and ceramide. These lipids disrupt mitochondrial function by increasing reactive oxygen species (ROS), decreasing mitochondrial membrane potential, and increasing mitochondrial permeability. The net response is cytochrome C release, activation of caspases, and apoptosis or necrosis. Not all cells succumb to oxalate toxicity, however, in those cells that don't, ROS and lipid-signaling molecules induce changes in gene expression that allow them to survive and adapt to the toxic insult. The increased expression of immediate early genes (IEGs), osteopontin, extracellular matrix (ECM) proteins, crystallization inhibitors, and chemokines orchestrates a group of cellular responses--including cell proliferation, secretion of kidney stone inhibitory proteins, recruitment of immune cells, and tissue remodeling--that limit accumulation of cell debris or increase the production of inhibitors of calcium oxalate crystallization, thereby limiting stone formation.
This article was published in Crit Rev Eukaryot Gene Expr and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords