alexa Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Pfeiffer P, Goedecke W, Obe G

Abstract Share this page

Abstract DNA double-strand breaks (DSB) are considered to be critical primary lesions in the formation of chromosomal aberrations. DSB may be induced by exogenous agents, such as ionizing radiation, but also occur spontaneously during cellular processes at quite significant frequencies. To repair this potentially lethal damage, eukaryotic cells have evolved a variety of repair pathways related to homologous and illegitimate recombination, also called non-homologous DNA end joining, which may induce small scale mutations and chromosomal aberrations. In this paper we review the major cellular sources of spontaneous DSB and the different homologous and illegitimate recombination repair pathways, with particular focus on their potential to induce chromosomal aberrations.
This article was published in Mutagenesis and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version