alexa Mechanisms of immune-deposit formation and the mediation of immune renal injury.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Genetic Syndromes & Gene Therapy

Author(s): Nangaku M, Couser WG

Abstract Share this page

Abstract The passive trapping of preformed immune complexes is responsible for some forms of glomerulonephritis that are associated with mesangial or subendothelial deposits. The biochemical characteristics of circulating antigens play important roles in determining the biologic activity of immune complexes in these cases. Examples of circulating immune complex diseases include the classic acute and chronic serum sickness models in rabbits, and human lupus nephritis. Immune deposits also form "in situ". In situ immune deposit formation may occur at subepithelial, subendothelial, and mesangial sites. In situ immune-complex formation has been most frequently studied in the Heymann nephritis models of membranous nephropathy with subepithelial immune deposits. While the autoantigenic target in Heymann nephritis has been identified as megalin, the pathogenic antigenic target in human membranous nephropathy had been unknown until the recent identification of neutral endopeptidase as one target. It is likely that there is no universal antigen in human membranous nephropathy. Immune complexes can damage glomerular structures by attracting circulating inflammatory cells or activating resident glomerular cells to release vasoactive substances, cytokines, and activators of coagulation. However, the principal mediator of immune complex-mediated glomerular injury is the complement system, especially C5b-9 membrane attack complex formation. C5b-9 inserts in sublytic quantities into the membranes of glomerular cells, where it produces cell activation, converting normal cells into resident inflammatory effector cells that cause injury. Excessive activation of the complement system is normally prevented by a series of circulating and cell-bound complement regulatory proteins. Genetic deficiencies or mutations of these proteins can lead to the spontaneous development of glomerular disease. The identification of specific antigens in human disease may lead to the development of fundamental therapies. Particularly promising future therapeutic approaches include selective immunosuppression and interference in complement activation and C5b-9-mediated cell injury. This article was published in Clin Exp Nephrol and referenced in Journal of Genetic Syndromes & Gene Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version