alexa Mechanisms underlying differential response to estrogen-induced apoptosis in long-term estrogen-deprived breast cancer cells.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Sweeney EE, Fan P, Jordan VC

Abstract Share this page

Abstract Models of long-term estrogen-deprived breast cancer cells are utilized in the laboratory to mimic clinical aromatase inhibitor-resistant breast cancer and serve as a tool to discover new therapeutic strategies. The MCF-7:5C and MCF-7:2A subclones were generated through long-term estrogen deprivation of estrogen receptor (ER)-positive MCF-7 cells, and represent anti-hormone‑resistant breast cancer. MCF-7:5C cells paradoxically undergo estrogen-induced apoptosis within seven days of estrogen (estradiol, E2) treatment; MCF-7:2A cells also experience E(2)-induced apoptosis but evade dramatic cell death until approximately 14 days of treatment. To discover and define the mechanisms by which MCF-7:2A cells survive two weeks of E(2) treatment, systematic experiments were performed in this study. The data suggest that MCF-7:2A cells employ stronger antioxidant defense mechanisms than do MCF-7:5C cells, and that oxidative stress is ultimately required for MCF-7:2A cells to die in response to E2 treatment. Tumor necrosis factor (TNF) family member activation is also essential for E(2)-induced apoptosis to occur in MCF-7:2A cells; upregulation of TNFα occurs simultaneously with oxidative stress activation. Although the unfolded protein response (UPR) signaling pattern is similar to that in MCF-7:5C cells, it is not sufficient to cause cell death in MCF-7:2A cells. Additionally, increased insulin-like growth factor receptor β (IGF-1Rβ) confers a mechanism of growth and anti-apoptotic advantage in MCF-7:2A cells.
This article was published in Int J Oncol and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • Global Experts Meeting On Cell and Gene Therapy
    April 25-26, 2018 Dubai, UAE
  • Cell Metabolism 2018
    September 19 - 20, 2018 Philadelphia, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords