alexa Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation.
Orthopaedics

Orthopaedics

Journal of Osteoporosis and Physical Activity

Author(s): Turner CH, Pavalko FM

Abstract Share this page

Abstract The skeleton's primary mechanical function is to provide rigid levers for muscles to act against as they hold the body upright in defiance of gravity. Many bones are exposed to thousands of repetitive loads each day. During growth and development, the skeleton optimizes its architecture by subtle adaptations to these mechanical loads. The mechanisms for adaptation involve a multistep process of cellular mechanotransduction including: mechanocoupling - conversion of mechanical forces into local mechanical signals, such as fluid shear stresses, that initiate a response by bone cells; biochemical coupling - transduction of a mechanical signal to a biochemical response involving pathways within the cell membrane and cytoskeleton; cell-to-cell signaling from the sensor cells (probably osteocytes and bone lining cells) to effector cells (osteoblasts or osteoclasts) using prostaglandins and nitric oxide as signaling molecules; and effector response - either bone formation or resorption to cause appropriate architectural changes. These architectural changes tend to adjust and improve the bone structure to its prevailing mechanical environment. Structural changes can be predicted, to some extent, by mathematical formulas derived from three fundamental rules: (1) bone adaptation is driven by dynamic, rather than static, loading; (2) extending the loading duration has a diminishing effect on further bone adaptation; (3) bone cells accommodate to a mechanical loading environment, making them less responsive to routine or customary loading signals.
This article was published in J Orthop Sci and referenced in Journal of Osteoporosis and Physical Activity

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords