alexa Mechanotransduction at cell-matrix and cell-cell contacts.
Engineering

Engineering

Journal of Biomimetics Biomaterials and Tissue Engineering

Author(s): Chen CS, Tan J, Tien J

Abstract Share this page

Abstract Mechanical forces play an important role in the organization, growth, maturation, and function of living tissues. At the cellular level, many of the biological responses to external forces originate at two types of specialized microscale structures: focal adhesions that link cells to their surrounding extracellular matrix and adherens junctions that link adjacent cells. Transmission of forces from outside the cell through cell-matrix and cell-cell contacts appears to control the maturation or disassembly of these adhesions and initiates intracellular signaling cascades that ultimately alter many cellular behaviors. In response to externally applied forces, cells actively rearrange the organization and contractile activity of the cytoskeleton and redistribute their intracellular forces. Recent studies suggest that the localized concentration of these cytoskeletal tensions at adhesions is also a major mediator of mechanical signaling. This review summarizes the role of mechanical forces in the formation, stabilization, and dissociation of focal adhesions and adherens junctions and outlines how integration of signals from these adhesions over the entire cell body affects how a cell responds to its mechanical environment. This review also describes advanced optical, lithographic, and computational techniques for the study of mechanotransduction. This article was published in Annu Rev Biomed Eng and referenced in Journal of Biomimetics Biomaterials and Tissue Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords