alexa Melanopsin: an exciting photopigment.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Hankins MW, Peirson SN, Foster RG

Abstract Share this page

Abstract The discovery that mice lacking rods and cones are capable of regulating their circadian rhythms by light provided the conceptual framework for the discovery of an entirely new photoreceptor system within the mammalian eye. We now know that a small subset of retinal ganglion cells are directly photosensitive and utilize an opsin/vitamin A-based photopigment called melanopsin maximally sensitive in the blue part of the spectrum. We also know that these photosensitive retinal ganglion cells mediate a broad range of physiological responses to light, ranging from the regulation of circadian rhythms to pupil constriction. Most recently, it has become clear that the melanopsins are only distantly related to visual pigments and in terms of their biochemistry share more in common with invertebrate photopigments. Here we outline the discovery of this remarkable new photoreceptor system, review the structure of melanopsin and conclude with a working model of melanopsin phototransduction. This article was published in Trends Neurosci and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords