alexa Membrane heterogeneity created by transertion is a global regulator in bacteria.


Biochemistry & Analytical Biochemistry

Author(s): Fishov I, Norris V

Abstract Share this page

Abstract The bacterial membrane is characterized by a heterogeneous distribution of lipids and proteins and of higher level structures termed hyperstructures. The causes of this heterogeneity include lipid-lipid, protein-protein and protein-lipid interactions. The coupling of transcription, translation and insertion of nascent proteins into membrane, transertion, creates large membrane domains that are proposed to be important in the regulation and execution of the cell cycle and in other functions. In describing membrane heterogeneity, we suggest here that transertion is a global regulator coupling metabolism to the cell cycle. Copyright © 2012 Elsevier Ltd. All rights reserved. This article was published in Curr Opin Microbiol and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version