alexa Meprin, a brush-border enzyme, plays an important role in hypoxic ischemic acute renal tubular injury in rats.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Carmago S, Shah SV, Walker PD

Abstract Share this page

Abstract BACKGROUND: It has been shown that non-congenic mice strains with lower levels of renal meprin develop less renal injury following renal ischemia and reperfusion. We have demonstrated that following ischemia-reperfusion renal injury, there is a rapid shift of meprin localization and intensity from the brush border to the cytoplasmic compartment, tubular lumens and the tubular basement membranes. Radical shifts in the localization of an activated enzyme to potentially sensitive areas of the tubule suggest a toxic role for meprin in ischemia-reperfusion injury. Though meprin degrades extracellular matrix components and other substrates, to our knowledge meprin cytotoxicity has never been examined. Therefore, the first objective of this study was to determine if meprin is directly cytotoxic to renal cells in vitro. The second objective was to determine if inhibition of meprin is protective against hypoxia-reoxygenation injury in vitro and ischemia-reperfusion injury in vivo. METHODS: The immortalized porcine epithelial cell line (LLC-PK1) and Madin-Darby canine kidney (MDCK) cells in culture were exposed to meprin in various concentrations and for various times. Cell death was determined by Trypan Blue exclusion, lactate dehydrogenase (LDH) release and the 3-[4,5] dimethylthiazol-2,5-diphenyltetrazolium bromide (MTT) assay. Renal slices were used to examine the effect of the meprin inhibitor, actinonin, on hypoxic injury in vitro. Male Sprague-Dawley rats were used in ischemia-reperfusion injury studies to determine the effect of actinonin on renal function as measured by plasma urea nitrogen, creatinine and renal histology. RESULTS: Meprin is cytotoxic to LLC-PK1 and MDCK cells in a concentration and time dependent manner. The meprin inhibitor 1,10-phenanthroline completely abolished the cytotoxic effect. Renal slices exposed to hypoxia and hypoxia followed by reoxygenation showed marked cell death. Pre-treatment with the actinonin was markedly protective while not interfering with the hypoxia-induced fall in adenosine 5'-triphosphate (ATP) levels. In in vivo studies, rats exposed to ischemia/reperfusion injury were markedly protected against acute renal failure by IP treatment with actinonin. CONCLUSIONS: Meprin is cytotoxic to cultured renal tubular epithelial cells in vitro. Renal slices are protected from hypoxia-reoxygenation injury in vitro by the meprin inhibitor actinonin. Meprin inhibition is protective against rat renal hypoxia-reoxygenation injury. These data strongly support the concept that meprin is cytotoxic and may play a key role in renal ischemia-reperfusion induced renal injury. This article was published in Kidney Int and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords