alexa Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Studeny M

Abstract Share this page

BACKGROUND:

High concentrations of interferon beta (IFN-beta) inhibit malignant cell growth in vitro. However, the therapeutic utility of IFN-beta in vivo is limited by its excessive toxicity when administered systemically at high doses. Mesenchymal stem cells (MSC) can be used to target delivery of agents to tumor cells. We tested whether MSC can deliver IFN-beta to tumors, reducing toxicity.

METHODS:

Human MSC were transduced with an adenoviral expression vector carrying the human IFN-beta gene (MSC-IFN-beta cells). Flow cytometry was used to measure tumor cell proliferation among in vitro co-cultures of MSC-IFN-beta cells and human MDA 231 breast carcinoma cells or A375SM melanoma cells. We used a severe combined immunodeficiency mouse xenograft model (4-10 mice per group) to examine the effects of injected MSC-IFN-beta cells and human recombinant IFN-beta on the growth of MDA 231- and A375SM-derived pulmonary metastases in vivo and on survival. All statistical tests were two-sided.

RESULTS:

Co-culture of MSC-IFN-beta cells with A375SM cells or MDA 231 cells inhibited tumor cell growth as compared with growth of the tumor cells cultured alone (differences in mean percentage of control cell growth: -94.0% [95% confidence interval [CI] = -81.2% to -106.8%; P<.001] and -104.8% [95% CI = -82.1% to -127.5%; P<.001], respectively). Intravenous injection of MSC-IFN-beta cells into mice with established MDA 231 or A375SM pulmonary metastases led to incorporation of MSC in the tumor architecture and, compared with untreated control mice, to prolonged mouse survival (median survival for MDA 231-injected mice: 60 and 37 days for MSC-injected and control mice, respectively [difference = 23.0 days (95% CI = 14.5 to 34.0 days; P<.001]; median survival for A375SM-injected mice: 73.5 and 30.0 days for MSC-injected and control mice, respectively [difference = 43.5 days (95% CI = 37.0 to 57.5 days; P<.001]). By contrast, intravenous injection of recombinant IFN-beta did not prolong survival in the same models (median survival for MDA 231-injected mice: 41.0 and 37.0 days for IFN-beta-injected and control mice, respectively [difference = 4 days, 95% CI = -5 to 10 days; P = .308]; median survival for A375SM-injected mice: 32.0 and 30.0 days for IFN-beta-injected and control mice, respectively [difference = 2 days, 95% CI = 0 to 4.5 days; P = .059]).

CONCLUSIONS:

Injected MSC-IFN-beta cells suppressed the growth of pulmonary metastases, presumably through the local production of IFN-beta in the tumor microenvironment. MSC may be an effective platform for the targeted delivery of therapeutic proteins to cancer sites.

This article was published in J Natl Cancer Inst. and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords