alexa Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Lin DY, Zeng D

Abstract Share this page

Abstract To identify genetic variants with modest effects on complex human diseases, a growing number of networks or consortia are created for sharing data from multiple genome-wide association studies on the same disease or related disorders. A central question in this enterprise is whether to obtain summary results or individual participant data from relevant studies. We show theoretically and numerically that meta-analysis of summary results is statistically as efficient as joint analysis of individual participant data (provided that both analyses are performed properly under the same modeling assumptions). We illustrate this equivalence with case-control data from the Finland-United States Investigation of NIDDM Genetics (FUSION) study. Collating only summary results will increase the number and representativeness of available studies, simplify data collection and analysis, reduce resource utilization, and accelerate discovery.
This article was published in Genet Epidemiol and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords