alexa Metabolic activation of 2-substituted derivatives of myristic acid to form potent inhibitors of myristoyl CoA:protein N-myristoyltransferase.
Microbiology

Microbiology

Virology & Mycology

Author(s): Paige LA, Zheng GQ, DeFrees SA, Cassady JM, Geahlen RL

Abstract Share this page

Abstract The importance of myristoylation for the proper biological functioning of many acylated proteins has generated interest in the enzymes of the myristoylation pathway and their interactions with substrates and inhibitors. Previous observations that S-(2-oxopentadecyl)-CoA, a nonhydrolyzable methylene-bridged analogue of myristoyl-CoA, was a potent inhibitor of myristoyl-CoA:protein N-myristoyltransferase (NMT) [Paige, L. A., Zheng, G.-q., DeFrees, S. A., Cassady, J. M., & Geahlen, R. L. (1989) J. Med. Chem. 32, 1665] prompted a closer examination of the effect of substituents at the 2-position on the interactions of myristic acid and myristoyl-CoA analogues with NMT. As an initial approach, three myristic acid derivatives bearing different substituents at the 2-position, 2-fluoromyristic acid, 2-bromomyristic acid, and 2-hydroxymyristic acid, were selected for study. Both 2-bromomyristic acid and 2-hydroxymyristic acid were available commercially; 2-fluoromyristic acid was prepared synthetically. All three compounds were found to be only weak inhibitors of NMT in vitro. Of the three, 2-bromomyristic acid was the most potent (Ki = 100 microM). In cultured cells, however, 2-hydroxymyristic acid was by far the more effective inhibitor of protein myristoylation. Neither 2-hydroxymyristic acid nor 2-bromomyristic acid significantly inhibited protein palmitoylation in cultured cells, indicating that inhibition was not occurring at the level of acyl-CoA synthetase. Activation of the 2-substituted myristic acid derivatives to their corresponding acyl-CoA thioesters by acyl-CoA synthetase resulted in inhibitors of greatly increased potency. The 2-substituted acyl-CoA analogues, 2-hydroxymyristoyl-CoA, 2-bromomyristoyl-CoA, and 2-fluoromyristoyl-CoA, were synthesized and shown to be competitive inhibitors of NMT in vitro (Ki's = 45, 450, and 200 nM, respectively). These data suggested that the enhanced inhibitory potency of 2-hydroxymyristic acid seen in cells was most probably a result of its metabolic activation to the CoA thioester. The presence of substituents at the 2-position also affected the ability of the acyl group to be transferred by NMT to a peptide substrate. Of the three acyl-CoA analogues, only 2-fluoromyristoyl-CoA served as a substrate for NMT.
This article was published in Biochemistry and referenced in Virology & Mycology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

agriaquaculture@omicsonline.com

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

biochemjournals@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

chemistryjournals@omicsonline.com

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

clinicaljournals@omicsonline.com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engineeringjournals@omicsonline.com

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

nutritionjournals@omicsonline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

generalscience@omicsonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmolbio@omicsonline.com

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immunomicrobiol@omicsonline.com

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nursinghealthcare@omicsonline.com

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

medicaljournals@omicsonline.com

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuropsychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

pharmajournals@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords