alexa Metabolic effects of metformin in non-insulin-dependent diabetes mellitus.


Journal of Antivirals & Antiretrovirals

Author(s): Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE

Abstract Share this page

Abstract BACKGROUND: The metabolic effects and mechanism of action of metformin are still poorly understood, despite the fact that it has been used to treat patients with non-insulin-dependent diabetes mellitus (NIDDM) for more than 30 years. METHODS: In 10 obese patients with NIDDM, we used a combination of isotope dilution, indirect calorimetry, bioimpedance, and tissue-balance techniques to assess the effects of metformin on systemic lactate, glucose, and free-fatty-acid turnover; lactate oxidation and the conversion of lactate to glucose; skeletal-muscle glucose and lactate metabolism; body composition; and energy expenditure before and after four months of treatment. RESULTS: Metformin treatment decreased the mean (+/- SD) glycosylated hemoglobin value from 13.2 +/- 2.2 percent to 10.5 +/- 1.6 percent (P < 0.001) and reduced fasting plasma glucose concentrations from 220 +/- 41 to 155 +/- 28 mg per deciliter (12.2 +/- 0.7 to 8.6 +/- 0.5 mmol per liter) (P < 0.001). Although resting energy expenditure did not change, the patients lost 2.7 +/- 1.3 kg of weight (P < 0.001), 88 percent of which was adipose tissue. The mean (+/- SE) rate of plasma glucose turnover (hepatic glucose output and systemic glucose disposal) decreased from 2.8 +/- 0.2 to 2.0 +/- 0.2 mg per kilogram of body weight per minute (15.3 +/- 0.9 to 10.8 +/- 0.9 mumol per kilogram per minute) (P < 0.001), as a result of a decrease in hepatic glucose output; systemic glucose clearance did not change. The rate of conversion of lactate to glucose (gluconeogenesis) decreased by 37 percent (P < 0.001), whereas lactate oxidation increased by 25 percent (P < 0.001). There were no changes in the plasma lactate concentration, plasma lactate turnover, muscle lactate release, plasma free-fatty-acid turnover, or uptake of glucose by muscle. CONCLUSIONS: Metformin acts primarily by decreasing hepatic glucose output, largely by inhibiting gluconeogenesis. It also seems to induce weight loss, preferentially involving adipose tissue. This article was published in N Engl J Med and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version