alexa Metabolism of and inhibition by chlorobenzoates in Pseudomonas putida P111.
Engineering

Engineering

Industrial Engineering & Management

Author(s): Hernandez BS, Higson FK, Kondrat R, Focht DD

Abstract Share this page

Abstract Pseudomonas putida P111 was isolated by enrichment culture on 2,5-dichlorobenzoate and was also able to grow on 2-chloro-, 3-chloro-, 4-chloro-, 2,3-dichloro-, 2,4-dichloro-, and 2,3,5-trichlorobenzoates. However, 3,5-dichlorobenzoate completely inhibited growth of P111 on all ortho-substituted benzoates that were tested. When 3,5-dichlorobenzoate was added as a cosubstrate with either 3- or 4-chlorobenzoate, cell yields and chloride release were greater than those observed from growth on either monochlorobenzoate alone. Moreover, resting cells of P111 grown on 4-chlorobenzoate released chloride from 3,5-dichlorobenzoate and produced no identifiable intermediate. In contrast, resting cells grown on 2,5-dichlorobenzoate metabolized 3,5-dichlorobenzoate without release of chloride and accumulated a degradation product, which was identified as 1-carboxy-1,2-dihydroxy-3,5-dichlorocyclohexadiene on the basis of gas chromatography-mass spectrometry confirmation of its two acid-hydrolyzed products, 3,5- and 2,4-dichlorophenol. Since 3,5-dichlorocatechol was rapidly metabolized by cells grown on 2,5-dichlorobenzoate, it is apparent that 1-carboxy-1,2-dihydroxy-3,5-dichlorocyclohexadiene is not further metabolized by these cells. Moreover, induction of a functional dihyrodiol dehydrogenase would not be required for growth of P111 on other ortho-chlorobenzoates since the corresponding chlorodihydrodiols produced from a 1,2-dioxygenase attack would spontaneously decompose to the corresponding catechols. In contrast, growth on 3-chloro-, 4-chloro-, or 3,5-dichlorobenzoate requires a functional dihydrodiol dehydrogenase, yet only the two monochlorobenzoates appear to induce for it.
This article was published in Appl Environ Microbiol and referenced in Industrial Engineering & Management

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords