alexa Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Denome SA, Stanley DC, Olson ES, Young KD

Abstract Share this page

Abstract From a soil isolate, Pseudomonas strain C18, we cloned and sequenced a 9.8-kb DNA fragment that encodes dibenzothiophene-degrading enzymes. Nine open reading frames were identified and designated doxABDEFGHIJ. Collectively, we refer to these genes as the DOX pathway. At the nucleotide level, doxABD are identical to the ndoABC genes that encode naphthalene dioxygenase of Pseudomonas putida. The DoxG protein is 97\% identical to NahC (1,2-dihydroxynaphthalene dioxygenase) of P. putida. DoxE has 37\% identity with cis-toluene dihydrodiol dehydrogenase. DoxF is similar to the aldehyde dehydrogenases of many organisms. The predicted DoxHIJ proteins have no obvious sequence similarities to known proteins. Gas chromatography with a flame ionization detector and mass spectroscopy confirmed that the DOX proteins convert naphthalene to salicylate and converting phenanthrene to 1-hydroxy-2-naphthoic acid. doxI mutants convert naphthalene to trans-o-hydroxybenzylidenepyruvate, indicating that the DoxI protein is similar to NahE (trans-o-hydroxybenzylidenepyruvate hydratase-aldolase). Comparison of the DOX sequence with restriction maps of cloned naphthalene catabolic pathway (NAH) genes revealed many conserved restriction sites. The DOX gene arrangement is identical to that proposed for NAH, except that the NAH equivalent of doxH has not been recognized. DoxH may be involved in the conversion of 2-hydroxy-4-(2'-oxo-3,5-cyclohexadienyl)-buta-2,4-dienoat e to cis-o-hydroxybenzylidenepyruvate. doxJ encodes an enzyme similar to NahD (isomerase). Our findings indicate that a single genetic pathway controls the metabolism of dibenzothiophene, naphthalene, and phenanthrene in strain C18 and that the DOX sequence encodes a complete upper naphthalene catabolic pathway similar to NAH.
This article was published in J Bacteriol and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version