alexa Metabolism of the lipid peroxidation product 4-hydroxynonenal by isolated hepatocytes and by liver cytosolic fractions.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Esterbauer H, Zollner H, Lang J

Abstract Share this page

Abstract The metabolism of the lipid peroxidation product 4-hydroxynonenal and of several other related aldehydes by isolated hepatocytes and rat liver subcellular fractions has been investigated. Hepatocytes rapidly metabolize 4-hydroxynonenal in an oxygen-independent process with a maximum rate (depending on cell preparation) ranging from 130 to 230 nmol/min per 10(6) cells (average 193 +/- 50). The aldehyde is also rapidly utilized by whole rat liver homogenate and the cytosolic fraction (140 000 g supernatant) supplemented with NADH, whereas purified nuclei, mitochondria and microsomes supplemented with NADH show no noteworthy consumption of the aldehyde. In cytosol, the NADH-mediated metabolism of the aldehyde exhibits a 1:1 stoichiometry, i.e. 1 mol of NADH oxidized/mol of hydroxynonenal consumed, and the apparent Km value for the aldehyde is 0.1 mM. Addition of pyrazole (10 mM) or heat inactivation of the cytosol completely abolishes aldehyde metabolism. The various findings strongly suggest that hepatocytes and rat liver cytosol respectively convert 4-hydroxynonenal enzymically is the corresponding alcohol, non-2-ene-1,4-diol, according to the equation: CH3-[CH2]4-CH(OH)-CH = CH-CHO + NADH + H+----CH3-[CH2]4-CH(OH)-CH = CH-CH2OH + NAD+. The alcohol non-2-ene-1,4-diol has not yet been isolated from incubations with hepatocytes and liver cytosolic fractions, but was isolated in pure form from an incubation mixture containing 4-hydroxynonenal, isolated liver alcohol dehydrogenase and NADH and its chemical structure was confirmed by mass spectroscopy. Compared with liver, all other tissues possess only little ability to metabolize 4-hydroxynonenal, ranging from 0\% (fat pads) to a maximal 10\% (kidney) of the activity present in liver. The structure of the aldehyde has a strong influence on the rate and extent of its enzymic NADH-dependent reduction to the alcohol. The saturated analogue nonanal is a poor substrate and only a small proportion of it is converted to the alcohol. Similarly, nonenal is much less readily utilized as compared with 4-hydroxynonenal. The effective conversion of the cytotoxic 4-hydroxynonenal and other reactive aldehydes to alcohols, which are probably less toxic, could play a role in the general defence system of the liver against toxic products arising from radical-induced lipid peroxidation.
This article was published in Biochem J and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords