alexa Metallothionein protects islets from hypoxia and extends islet graft survival by scavenging most kinds of reactive oxygen species.
Surgery

Surgery

Surgery: Current Research

Author(s): Li X, Chen H, Epstein PN

Abstract Share this page

Abstract Islet transplantation is a promising therapy for Type 1 diabetes, but many attempts have failed due to early graft hypoxia or immune rejection, which generate reactive oxygen species (ROS). In the current study, we determined that transgenic overexpression of the antioxidant metallothionein (MT) in pancreatic beta cells provided broad resistance to oxidative stress by scavenging most kinds of ROS including H2O2, peroxynitrite radical released from streptozotocin, 3-morpholinosydnonimine (SIN-1), and superoxide radical produced by xanthine/xanthine oxidase. MT also reduced nitric oxide-induced beta cell death. A direct test of hypoxia/reperfusion sensitivity was made by exposing FVB and MT islets to hypoxia (1\% O2). MT markedly reduced ROS production and improved islet cell survival. Because MT protected beta cells from a broad spectrum of ROS and from hypoxia, we considered it to be an ideal candidate for improving islet transplantation. We first tested syngeneic transplantation by implanting islets under the kidney capsule of the same strain, FVB mice, thereby eliminating the immune rejection component. Under these conditions, MT islets maintained much greater insulin content than control islets. Allotransplantation was then tested. MT transgenic and normal FVB islets were implanted under the kidney capsule of BALB/c mice that were previously treated with streptozotocin to induce diabetes. We found that MT islets extended the duration of euglycemia 2-fold longer than nontransgenic islets. The benefit of MT was due to protection from ROS since nitrotyrosine staining, an indicator of free radical damage, was much lower in MT grafts than in FVB grafts. The time course of protection suggested that the major mode of MT action may have been protection from hypoxia or hypoxia/reperfusion. These data demonstrate that treatment with a broad spectrum antioxidant protects islets from ROS damage such as that produced during the early phase of islet transplantation. This article was published in J Biol Chem and referenced in Surgery: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords