alexa Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Schmid CH, Stark PC, Berlin JA, Landais P, Lau J

Abstract Share this page

Abstract OBJECTIVE: Two investigations evaluate Bayesian meta-regression for detecting treatment interactions. STUDY DESIGN AND SETTING: The first compares analyses of aggregate and individual patient data on 1,860 subjects from 11 trials testing angiotensin converting enzyme (ACE) inhibitors for nondiabetic kidney disease. The second explores meta-regression for detecting treatment interaction on 671 covariates, including the baseline risk, from 232 meta-analyses of binary outcomes compiled from the Cochrane Collaboration and the medical literature. RESULTS: In the ACE inhibitor study, treatment effects were homogeneous so meta-regression identified no interactions. Analysis of individual patient data using a multilevel model, however, discovered that treatment reduced glomerular filtration rate (GFR) more among patients with higher baseline proteinuria. The second investigation found meta-regression most effective for detecting treatment interactions with study-level factors in meta-analyses with >10 studies, heterogeneous treatment effects, or significant overall treatment effects. Under all three conditions, 46\% of meta-regressions produced strong interactions (posterior probability >0.995) compared with 6\% otherwise. Baseline risk was associated with the odds ratio in 6\% of meta-analyses, half the rate found using maximum likelihood. CONCLUSION: Meta-regression can detect interactions of treatment with study-level factors when treatment effects are heterogeneous. Individual patient data are needed for patient-level factors and homogeneous effects. This article was published in J Clin Epidemiol and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords