alexa Methamphetamine self-administration produces attentional set-shifting deficits and alters prefrontal cortical neurophysiology in rats.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Parsegian A, Glen WB Jr, Lavin A, See RE

Abstract Share this page

Abstract BACKGROUND: Chronic methamphetamine abusers exhibit deficits in tasks requiring intact prefrontal cortex function, and prefrontal cortex dysfunction has been implicated in the loss of control over drug use. This study used a combination of behavioral and electrophysiologic assessments in rats with a history of long access methamphetamine self-administration to determine methamphetamine-induced changes in prefrontal cortex-dependent attentional set-shifting performance, drug-seeking, and prefrontal cortex neuronal activity. METHODS: Male Long-Evans rats self-administered methamphetamine (.02 mg/infusion, intravenous) or received yoked saline infusions for 6 hours a day for 14 days. Cognitive flexibility was assessed using an attentional set-shifting task before 2 weeks of self-administration and 1 day after self-administration. Animals then underwent 11 days of abstinence, followed by three subsequent tests for context-induced drug seeking. Finally, animals were anesthetized, and single-unit in vivo extracellular recordings were performed in the dorsomedial prefrontal cortex. RESULTS: Methamphetamine-experienced rats showed escalated drug intake and context-induced drug-seeking following abstinence. During the extradimensional set-shift component, meth-experienced rats showed selective impairments that were identical to deficits produced by excitotoxic lesions of the prefrontal cortex. Rats with a history of chronic methamphetamine intake also exhibited higher basal firing frequency and a significantly greater proportion of burst-firing cells in the prefrontal cortex compared with yoked-saline controls. CONCLUSIONS: Prefrontal cortex-specific alterations in neuronal function may play a key role in methamphetamine-induced attentional deficits and drug-seeking. These data support the possibility that targeting prefrontal cortex pathology may improve treatment outcome in methamphetamine addiction. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
This article was published in Biol Psychiatry and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords