alexa Methodological issues in microdialysis sampling for pharmacokinetic studies.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): de Lange EC, de Boer AG, Breimer DD

Abstract Share this page

Abstract Microdialysis is an in vivo technique that permits monitoring of local concentrations of drugs and metabolites at specific sites in the body. Microdialysis has several characteristics, which makes it an attractive tool for pharmacokinetic research. About a decade ago the microdialysis technique entered the field of pharmacokinetic research, in the brain, and later also in peripheral tissues and blood. Within this period much has been learned on the proper use of this technique. Today, it has outgrown its child diseases and its potentials and limitations have become more or less well defined. As microdialysis is a delicate technique for which experimental factors appear to be critical with respect to the validity of the experimental outcomes, several factors should be considered. These include the probe; the perfusion solution; post-surgery interval in relation to surgical trauma, tissue integrity and repeated experiments; the analysis of microdialysate samples; and the quantification of microdialysate data. Provided that experimental conditions are optimized to give valid and quantitative results, microdialysis can provide numerous data points from a relatively small number of individual animals to determine detailed pharmacokinetic information. An example of one of the added values of this technique compared with other in vivo pharmacokinetic techniques, is that microdialysis reflects free concentrations in tissues and plasma. This gives the opportunity to assess information on drug transport equilibration across membranes such as the blood-brain barrier, which already has provided new insights. With the progress of analytical methodology, especially with respect to low volume/low concentration measurements and simultaneous measurement of multiple compounds, the applications and importance of the microdialysis technique in pharmacokinetic research will continue to increase.
This article was published in Adv Drug Deliv Rev and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords