alexa Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution.

Journal of Primatology

Author(s): He X, Tillo D, Vierstra J, Syed KS, Deng C,

Abstract Share this page

Abstract In mammals, the cytosine in CG dinucleotides is typically methylated producing 5-methylcytosine (5mC), a chemically less stable form of cytosine that can spontaneously deaminate to thymidine resulting in a T•G mismatched base pair. Unlike other eukaryotes that efficiently repair this mismatched base pair back to C•G, in mammals, 5mCG deamination is mutagenic, sometimes producing TG dinucleotides, explaining the depletion of CG dinucleotides in mammalian genomes. It was suggested that new TG dinucleotides generate genetic diversity that may be critical for evolutionary change. We tested this conjecture by examining the DNA sequence properties of regulatory sequences identified by DNase I hypersensitive sites (DHSs) in human and mouse genomes. We hypothesized that the new TG dinucleotides generate transcription factor binding sites (TFBS) that become tissue-specific DHSs (TS-DHSs). We find that 8-mers containing the CG dinucleotide are enriched in DHSs in both species. However, 8-mers containing a TG and no CG dinucleotide are preferentially enriched in TS-DHSs when compared with 8-mers with neither a TG nor a CG dinucleotide. The most enriched 8-mer with a TG and no CG dinucleotide in tissue-specific regulatory regions in both genomes is the AP-1 motif ( TG: A(C)/GT CA: N), and we find evidence that TG dinucleotides in the AP-1 motif arose from CG dinucleotides. Additional TS-DHS-enriched TFBS containing the TG/CA dinucleotide are the E-Box motif (G CA: GC TG: C), the NF-1 motif (GG CATG: CC), and the GR (glucocorticoid receptor) motif (G-A CATG: T-C). Our results support the suggestion that cytosine methylation is mutagenic in tetrapods producing TG dinucleotides that create TFBS that drive evolution. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2015. This work is written by US Government employees and is in the public domain in the US.
This article was published in Genome Biol Evol and referenced in Journal of Primatology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version