alexa Methylprednisolone exacerbates acute critical illness-related corticosteroid insufficiency associated with traumatic brain injury in rats.
Surgery

Surgery

Journal of Trauma & Treatment

Author(s): Chen X, Zhang B, Chai Y, Dong B, Lei P,

Abstract Share this page

Abstract Emerging evidence demonstrates that severe illness could induce critical illness-related corticosteroid insufficiency (CIRCI) and cause poor prognosis. The purpose of this study was to test the hypothesis that methylprednisolone (MP), a synthetic glucocorticoid, promotes post-traumatic apoptosis in both the hypothalamus and pituitary, resulting in acute CIRCI and increased mortality in the acute phase of traumatic brain injury (TBI). We tested this hypothesis by measuring acute CIRCI in rats subjected to fluid percussion injury (FPI) and treated with MP (5-30mg/kg). The corticosteroid response to TBI was evaluated using the corticosterone increase index (CII), where values less than 2.5 were considered indicative of acute CIRCI. The CII of MP treated rats was comparable to that of saline treated control rats before injury but was significantly decreased in injured rats receiving high-dose MP on post-injury day 7. Similarly, the incidence of acute CIRCI was significantly higher in the high-dose MP group on post-injury day 7. Furthermore, the CII of rats that did not survive post-injury was significantly lower compared to that of survival and was indicative of acute CIRCI. We also examined apoptosis in the paraventricular nucleus (PVN) of the hypothalamus and the adenohypophysis of the pituitary, using a TUNEL assay and transmission electron microscopy (TEM). The number of TUNEL-positive cells was significantly higher in injured rats treated with high-dose MP. No TUNEL-positive cells were detected in the adenohypophysis across experimental groups at either 7 or 14days after TBI. However, autopsies performed on rats that did not survive post-injury revealed obvious apoptotic cells in the adenohypophysis. Moreover, TEM revealed morphological changes characteristic of apoptosis in both the PVN and adenohypophysis of high-dose MP treated rats. These data suggest that MP therapy for TBI could increase neuronal apoptosis in both the hypothalamus and pituitary and consequently exacerbate acute CIRCI and mortality induced by TBI. Copyright © 2011 Elsevier B.V. All rights reserved. This article was published in Brain Res and referenced in Journal of Trauma & Treatment

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords