alexa Microbial agents associated with waterborne diseases.


Journal of Clinical & Cellular Immunology

Author(s): Leclerc H, Schwartzbrod L, DeiCas E

Abstract Share this page

Abstract Many classes of pathogens excreted in feces are able to initiate waterborne infections. There are bacterial pathogens, including enteric and aquatic bacteria, enteric viruses, and enteric protozoa, which are strongly resistant in the water environment and to most disinfectants. The infection dose of viral and protozoan agents is lower than bacteria, in the range of one to ten infectious units or oocysts. Waterborne outbreaks of bacterial origin (particularly typhoid fever) in the developing countries have declined dramatically from 1900s. Therefore, some early bacterial agents such as Shigella sonnei remains prevalent and new pathogens of fecal origin such as zoonotic C. jejuni and E. coli O157:H7 may contaminate pristine waters through wildlife or domestic animal feces. The common feature of these bacteria is the low inoculum (a few hundred cells) that may trigger disease. The emergence in early 1992 of serotype O139 of V. cholerae with epidemic potential in Southeast Asia suggests that other serotypes than V. cholerae O1 could also getting on epidemic. Some new pathogens include environmental bacteria that are capable of surviving and proliferating in water distribution systems. Other than specific hosts at risk, the general population is refractory to infection with ingested P. aeruginosa. The significance of Aeromonas spp. in drinking water to the occurrence of acute gastroenteritis remains a debatable point and has to be evaluated in further epidemiological studies. Legionella and Mycobacterium avium complex (MAC) are environmental pathogens that have found an ecologic niche in drinking and hot water supplies. Numerous studies have reported Legionnaires' disease caused by L. pneumophila occurring in residential and hospital water supplies. M. avium complex frequently causes disseminated infections in AIDS patients and drinking water has been suggested as a source of infection; in some cases the relationship has been proven. More and more numerous reports show that Helicobacter pylori DNA can be amplified from feces samples of infected patients, which strongly suggests fecal-to-oral transmission. Therefore, it is possible that H. pylori infection is waterbome, but these assumptions need to be substantiated. Giardiasis has become the most common cause of human waterborne disease in the U.S. over the last 30 years. However, as a result of the massive outbreak of waterborne cryptosporidiosis in Milwaukee, Wisconsin, affecting an estimated 403,000 persons, there is increasing interest in the epidemiology and prevention of new infection disease caused by Cryptosporidium spp. as well as monitoring water quality. The transmission of Cryptosporidium and Giardia through treated water supplies that meet water quality standards demonstrates that water treatment technologies have become inadequate, and that a negative coliform no longer guarantees that water is free from all pathogens, especially from protozoan agents. Substantial concern persists that low levels of pathogen occurrence may be responsible for the endemic transmission of enteric disease. In addition to Giardia and Cryptosporidium, some species of genera Cyclospora, Isospora, and of family Microsporidia are emerging as opportunistic pathogens and may have waterborne routes of transmission. More than 15 different groups of viruses, encompassing more than 140 distinct types can be found in the human gut. Some cause illness unrelated with the gut epithelium, such as Hepatitis A virus (HAV) and Hepatitis E virus (HEV). Numerous large outbreaks have been documented in the U.S. between 1950 and 1970, and the incidence rate has strongly declined in developing countries since the 1970s. Hepatitis E is mostly confined to tropical and subtropical areas, but recent reports indicate that it can occur at a low level in Europe. A relatively small group of viruses have been incriminated as causes of acute gastroenteritis in humans and fewer have proven to be true etiologic agents, including rotavirus, calicivirus, astrovirus, and some enteric adenovirus. These enteric viruses have infrequently been identified as the etiologic agents of waterborne disease outbreaks, because of inadequate diagnostic technology, but many outbreaks of unknown etiology currently reported are likely due to viral agents. Actually, Norwalk virus and Norwalk-like viruses are recognized as the major causes of waterborne illnesses world-wide. The global burden of infectious waterborne disease is considerable. Reported numbers highly underestimate the real incidence of waterborne diseases. The most striking concern is that enteric viruses such as caliciviruses and some protozoan agents, such as Cryptosporidium, are the best candidates to reach the highest levels of endemic transmission, because they are ubiquitous in water intended for drinking, being highly resistant to relevant environmental factors, including chemical disinfecting procedures. Other concluding concerns are the enhanced risks for the classic group of debilitated subjects (very young, old, pregnant, and immunocompromised individuals) and the basic requirement of to take specific measures aimed at reducing the risk of waterborne infection diseases in this growing, weaker population. This article was published in Crit Rev Microbiol and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Thomas Böldicke
    Intrabodies against the Polysialyltransferases ST8SiaII and ST8SiaIV inhibit Polysialylation of NCAM in rhabdomyosarcoma tumor cells
    PPT Version | PDF Version
  • Hedef Dhafir El-Yassin
    The Immune Response of Prolactin and the Induction of Tumor Necrosis Factor (TNF) in Iraqi Patients Infected with Hepatitis C Virus
    PPT Version | PDF Version
  • Moshe Giladi
    Tumor Treating Fields (TTFields) induced cancer cell death may be immunogenic resulting in enhanced antitumor efficacy when combined with immune-modulating therapy
    PPT Version | PDF Version
  • Manche Santoshi Kumari
    Prevalence of otological disorders in diabetic patients with hearing loss
    PPT Version | PDF Version
  • M Shahnawaz Khan
    Graphene Oxide @ Gold Nanorods Conjugate for Controlled Release of Doxorubicin in tumor
    PPT Version | PDF Version
  • Ehab Kamal
    Apitherapy in immune mediated disorders
    PPT Version | PDF Version
  • Omar E Franco
    Heterogeneous Tumor Stroma and Prostate Carcinogenesis
    PPT Version | PDF Version
  • Yen-Chein Lai
    Molecular pathogenesis in granulosa cell tumor is not only due to somatic FOXL2 mutation
    PPT Version | PDF Version
  • Babak Behnam
    SLUG and SOX9 Cooperatively Regulate Tumor Initiating Niche Factors in Breast Cancer
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Fan-Gang Tseng
    PPT Version | PDF Version
  • Myron R Szewczuk
    Therapeutic targeting neuraminidase-1 in multi-stage of tumorigenesis
    PPT Version | PDF Version
  • Hawa ZE Jaafar
    Involvement of elicitated Labisia pumila Benth. biofluids in the alleviation of chemotoxicity effect and antitumor activity
    PPT Version | PDF Version
  • Abdalla Omar
    Study of Some Egyptian Plants of Potential Use in Some Cases of Hepatic Disorders
    PPT Version | PDF Version
  • Huidi Liu
    Reduced Expression of SOX7 in Ovarian Cancer: a Novel Tumor Suppressor through the Wnt/β-catenin Signaling Pathway
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version