alexa Microbial attachment and feed digestion in the rumen.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): McAllister TA, Bae HD, Jones GA, Cheng KJ

Abstract Share this page

Abstract Direct microscopic examination of the rumen and its contents shows microbial populations largely attached to feed particles in the digesta. Most feeds contain a surface layer that is resistant to attachment and therefore to digestion. Infiltration of these recalcitrant epidermal layers through damage sites or through focused enzymatic attack is essential for initiation of the digestive process. Proliferation of primary colonizing cells produces glycocalyx-enclosed microcolonies. Secondary colonizers from the ruminal fluid associate with microcolonies, resulting in the formation of multispecies microbial biofilms. These metabolically related organisms associate with their preferred substrates and produce the myriad of enzymes necessary for the digestion of chemically and structurally complex plant tissues. Upon accessing the internal, enzyme-susceptible tissues, microbial "digestive consortia" attach to a variety of nutrients, including protein, cellulose, and starch and digest insoluble feed materials from the inside out. Substances that prevent microbial attachment or promote detachment (e.g., condensed tannins, methylcellulose) can completely inhibit cellulose digestion. As the microbial consortium matures and adapts to a particular type of feed, it becomes inherently stable and its participant microorganisms are notoriously difficult to manipulate due to the impenetrable nature of biofilms. Properties of feed that place constraints on microbial attachment and biofilm formation can have a profound effect on both the rate and extent of feed digestion in the rumen. Developments in feed processing (i.e., chemical and physical), plant breeding, and genetic engineering (both of ruminal microorganisms and plants) that overcome these constraints through the promotion of microbial attachment and biofilm formation could substantially benefit ruminant production.
This article was published in J Anim Sci and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords