alexa Microbial biotransformation of gentiopicroside by the endophytic fungus Penicillium crustosum 2T01Y01.
Toxicology

Toxicology

Journal of Drug Metabolism & Toxicology

Author(s): Zeng WL, Li WK, Han H, Tao YY, Yang L,

Abstract Share this page

Abstract Endophytic fungi are symbiotic with plants and possess multienzyme systems showing promising metabolite potency with region selectivity and stereoselectivity. The aim of this study was to use these special microorganisms as an in vitro model to mimic the potential mammalian metabolites of a natural iridoid gentiopicroside (GPS, compound 1). The fungi isolated from a medicinal plant, Dendrobium candidum Wall. ex Lindl., were screened for their biotransformation abilities with GPS as the substrate, and one strain with high converting potency was identified as Penicillium crustosum 2T01Y01 on the basis of the sequence of the internal transcribed spacer of the ribosomal DNA region. Upon the optimized incubation of P. crustosum 2T01Y01 with the substrate, seven deglycosylated metabolites were detected by ultraperformance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS). Preparative-scale biotransformation with whole cells of the endophytic fungus resulted in the production of five metabolites, including three novel ones, 5α-(hydroxymethyl)-6β-methyl-3,4,5,6-tetrahydropyrano[3,4-c]pyran-1(8H)-one (compound 2), (Z)-4-(1-hydroxybut-3-en-2-yl)-5,6-dihydropyran-2-one (compound 3), and (E)-4-(1-hydroxybut-3-en-2-yl)-5,6-dihydropyran-2-one (compound 4), along with two known ones, 5α-(hydroxymethyl)-6β-methyl-1H,3H-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one (compound 5) and 5α-(hydroxymethyl)-6α-methyl-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one (compound 6), aided by nuclear magnetic resonance and high-resolution mass spectral analyses. The other two metabolites were tentatively identified by online UPLC/Q-TOF MS as 5-hydroxymethyl-5,6-dihydroisochromen-1-one (compound 7) and 5-hydroxymethyl-3,4,5,6-tetrahydroisochromen-1-one (compound 8), and compound 8 is a new metabolite. To test the metabolic mechanism, the β-glucosidase activity of the fungus P. crustosum 2T01Y01 was assayed with ρ-nitrophenyl-β-d-glucopyranoside as a probe substrate, and the pathway of GPS biotransformation by strain 2T01Y01 is proposed. In addition, the hepatoprotective activities of GPS and metabolite compounds 2, 5, and 6 against human hepatocyte line HL-7702 injury induced by hydrogen peroxide were evaluated.
This article was published in Appl Environ Microbiol and referenced in Journal of Drug Metabolism & Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • European Biopharma Congress
    November 16-17, Vienna, Austria

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords