alexa Microbial degradation of the marine prymnesiophyte Emiliania huxleyi under oxic and anoxic conditions as a model for early diagenesis: long chain alkadienes, alkenones and alkyl alkenoates
Agri and Aquaculture

Agri and Aquaculture

Journal of Marine Science: Research & Development

Author(s): JeanFranois Rontani, Ian Jameson

Abstract Share this page

To investigate the effect of bacterial diagenesis on the distributions of algal lipids, the marine haptophyte Emiliania huxleyi was incubated with estuarine sediment slurries under defined conditions (oxic, sulfate reducing and methanogenic). Rapid initial degradation of lipids corresponded to increased bacterial populations, both of which subsequently declined. Under oxic conditions the algal C31 dienes were rapidly and completely degraded within 178 days. Extensive degradation of the characteristic C37 methyl alkenones occurred under all conditions (up to 85% under oxic conditions); however, the U37K′ index remained essentially constant, except for a slight increase at the longest oxic incubation time. Under anoxic conditions the alkyl alkenoates were preferentially degraded relative to the alkenones and changes in the AA36 index occurred. These results demonstrate that lipids are part of the “labile” organic matter; however, they were generally degraded at multiple rates which slowed during incubation, resulting in their partial preservation. Hence, laboratory experiments conducted over only short periods cannot predict the preservation potential of lipid components. Furthermore, preservation differed between sulfate reducing and methanogenic conditions, so the roles of anaerobic processes need to be considered individually with regard to oxic vs. anoxic preservation.

  • To read the full article Visit
  • Subscription
This article was published in Organic Geochemistry and referenced in Journal of Marine Science: Research & Development

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

gener[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords