alexa Microbial origin of excess methane in glacial ice and implications for life on Mars.
Infectious Diseases

Infectious Diseases

Air & Water Borne Diseases

Author(s): Tung HC, Bramall NE, Price PB

Abstract Share this page

Abstract Methane trapped in the 3,053-m-deep Greenland Ice Sheet Project 2 ice core provides an important record of millennial-scale climate change over the last 110,000 yr. However, at several depths in the lowest 90 m of the ice core, the methane concentration is up to an order of magnitude higher than at other depths. At those depths we have discovered methanogenic archaea, the in situ metabolism of which accounts for the excess methane. The total concentration of all types of microbes we measured with direct counts of Syto-23-stained cells tracks the excess of methanogens that we identified by their F420 autofluorescence and provides independent evidence for anomalous layers. The metabolic rate we estimated for microbes at those depths is consistent with the Arrhenius relation for rates found earlier for microbes imprisoned in rock, sediment, and ice. It is roughly the same as the rate of spontaneous macromolecular damage inferred from laboratory data, suggesting that microbes imprisoned in ice expend metabolic energy mainly to repair damage to DNA and amino acids rather than to grow. Equating the loss rate of methane recently discovered in the Martian atmosphere to the production rate by possible methanogens, we estimate that a possible Martian habitat would be at a temperature of approximately 0 degrees C and that the concentration, if uniformly distributed in a 10-m-thick layer, would be approximately 1 cell per ml.
This article was published in Proc Natl Acad Sci U S A and referenced in Air & Water Borne Diseases

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords