alexa Microbiology to help solve our energy needs: methanogenesis from oil and the impact of nitrate on the oil-field sulfur cycle.
Microbiology

Microbiology

Fermentation Technology

Author(s): Grigoryan A, Voordouw G

Abstract Share this page

Abstract Our society depends greatly on fossil fuels, and the environmental consequences of this are well known and include significant increases of the CO(2) concentration in the earth's atmosphere. Although microbiology has traditionally played only a minor role in fossil-fuel extraction, two novel key discoveries indicate that this may change. First, the realization that oil components can be converted to methane and CO(2) by methanogenic consortia in the absence of electron acceptors (oxygen, nitrate, sulfate) explains how much of the world's oil has been biodegraded in situ. In addition to inorganic nutrients, only water is needed for these methanogenic conversions. Hence, continued methanogenic biodegradation may have shaped the heavy-oil reservoirs that are so prevalent today. The potential to exploit these reactions, for example, by in situ gasification, is currently being actively investigated. Second, injection of nitrate in oil and gas fields can lower sulfide concentrations. High sulfide concentrations, caused by the action of sulfate-reducing bacteria (SRB), are associated with increased risk of corrosion, reservoir plugging (through precipitated sulfides), and human safety. Nitrate injection into an oil field stimulates subsurface heterotrophic nitrate-reducing bacteria (hNRB) and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Nitrite, formed by these NRB by partial reduction of nitrate, is a strong and specific SRB inhibitor. Nitrate injection has, therefore, promise in positively controlling the oil-field sulfur cycle. There is now more interest in and potential to apply petroleum microbiology than there has been in the past, allowing microbiologists to contribute to a sustainable energy future. This article was published in Ann N Y Acad Sci and referenced in Fermentation Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords