alexa Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Alter J, Sennoga CA, Lopes DM, Eckersley RJ, Wells DJ

Abstract Share this page

Abstract In the search for an efficient nonviral gene therapy approach for the treatment of genetic disorders of cardiac and skeletal muscle such as Duchenne muscular dystrophy, ultrasound in combination with contrast enhancing microbubbles has emerged as a promising tool for safe and site-specific enhancement of gene delivery. Indeed, microbubble-enhanced gene transfer (MBGT) has been investigated for a wide variety of target sites using both reporter and therapeutic genes. Although a range of different microbubbles have been used for MBGT studies, comparison of their efficiencies is difficult because microbubble concentration and the ultrasound settings used for the application vary considerably. Only two studies to date have attempted a direct comparison of commercially available microbubbles, and both concluded that not all microbubbles show the same efficiencies with MBGT. Thus far, the reason for this is unclear. Here, the efficiency of three commercially available microbubbles--Optison, SonoVue and Sonazoid--was analyzed to understand the microbubble properties that are important for their function as an effective enhancer for gene transfer in vivo. In this study, plasmid DNA or antisense oligonucleotides were delivered by systemic injection with MBGT, focused on the heart. Gene delivery to the heart with equalized concentrations of the three microbubbles showed that Optison and Sonazoid are more efficient in MBGT compared with SonoVue, which showed the weakest gene transfer to the myocardium. Investigations into the properties of these microbubbles showed that size and shell composition did not directly influence MBGT, whereas the microbubbles with increased stability in an ultrasound field showed better MBGT results than those degrading faster. Moreover, the microbubble concentration used for MBGT was also found to be an important factor influencing the efficiency of MBGT. In conclusion, the stability of a microbubble was shown to be a major influential factor for its performance in MBGT, as is the concentration of the microbubbles used. These findings emphasize the importance of detailed investigations into the properties of microbubbles to allow the production of a microbubble specifically designed for optimum performance with MBGT. This article was published in Ultrasound Med Biol and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords