alexa Microencapsulation of superoxide dismutase into biodegradable microparticles by spray-drying.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Youan BB

Abstract Share this page

Abstract The aim of this work was to encapsulate superoxide dismutase (SOD) into biodegradable microparticles by spray-drying technique. The nature of the organic solvent to dissolve the polymer, the method of incorporation of the drug in the organic phase (with or without a surfactant, namely sucrose ester of HLB = 6), the surfactant/polymer ratio, and the nature of the biodegradable polyesters were investigated as formulation variables. The polyesters investigated as matrix were poly(epsilon-caprolactone) (PCL), poly(d, l, lactide-co-glycolide) (PLG-RG756), and poly(d, l-lactide) (PLA-R207) of respective molecular weight 78.2 kDa, 84.8 kDa, and 199.8 kDa. At surfactant/polymer ratio of 1/10, the SOD-retained enzymatic activities were higher (> 95\%) for PLG-RG756 and PLA-R207 but relatively lower for the PCL (approximately 85\%) probably due to the PCL relatively higher hydrophobicity. The obtained microparticles exhibited average volume mean diameter of 4-10 microm, the smaller for PCL and the larger for PLG-RG756 polymeric matrix. The in vitro release profile showed that SOD was completely (100\%) released from PLA-R207 in 48 hr and from PLG-RG756 and PCL within 72 hr. These results showed that spray-drying with incorporation of surfactant such as sucrose ester may efficiently encapsulate SOD into biodegradable microparticles. Such formulations may improve the bioavailability of SOD and similar biopharmaceuticals. This article was published in Drug Deliv and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords