alexa Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Perozziello G, Simone G, Malara N, La Rocca R, Tallerico R,

Abstract Share this page

Abstract In this study, we propose a fast, simple method to biofunctionalise microfluidic systems for cellomic investigations based on micro-fluidic protocols. Many available processes either require expensive and time-consuming protocols or are incompatible with the fabrication of microfluidic systems. Our method differs from the existing since it is applicable to an assembled system, uses few microlitres of reagents and it is based on the use of microbeads. The microbeads have specific surface moieties to link the biomolecules and couple cell receptors. Furthermore, the microbeads serve as arm spacer and offer the benefit of the multi-valent interaction. Microfluidics was adapted together with topology and biochemistry surface modifications to offer the microenvironment for cellomic studies. Based on this principle, we exploit the streptavidin-biotin interaction to couple antibodies to the biofunctionalised microfluidic environment within 5 h using 200 μL of reagents and biomolecules. We selected the antibodies able to form complexes with the MHC class I (MHC-I) molecules present on the cell membrane and involved in the immune surveillance. To test the microfluidic system, tumour cell lines (RMA) were rolled across the coupled antibodies to recognise and strip MHC-I molecules. As result, we show that cell rolling performed inside a microfluidic chamber functionalised with beads and the opportune antibody facilitate the removal of MHC class I molecules. We showed that the level of median fluorescent intensity of the MHC-I molecules is 300 for cells treated in a not biofunctionalised surface. It decreased to 275 for cells treated in a flat biofunctionalised surface and to 250 for cells treated on a surface where biofunctionalised microbeads were immobilised. The cells with reduced expression of MHC-I molecules showed, after cytotoxicity tests, susceptibility 3.5 times higher than normal cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This article was published in Electrophoresis and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Transcriptomics
    October 30 - November 01, 2017 Bangkok, Thailand

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords