alexa Microfluidic devices for high-throughput proteome analyses.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Chao TC, Hansmeier N

Abstract Share this page

Abstract Over the last decades, microfabricated bioanalytical platforms have gained enormous interest due to their potential to revolutionize biological analytics. Their popularity is based on several key properties, such as high flexibility of design, low sample consumption, rapid analysis time, and minimization of manual handling steps, which are of interest for proteomics analyses. An ideal totally integrated chip-based microfluidic device could allow rapid automated workflows starting from cell cultivation and ending with MS-based proteome analysis. By reducing or eliminating sample handling and transfer steps and increasing the throughput of analyses these workflows would dramatically improve the reliability, reproducibility, and throughput of proteomic investigations. While these complete devices do not exist for routine use yet, many improvements have been made in the translation of proteomic sample handling and separation steps into microfluidic formats. In this review, we will focus on recent developments and strategies to enable and integrate proteomic workflows into microfluidic devices. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This article was published in Proteomics and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords