alexa Microfluidic scaffolds for tissue engineering.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ,

Abstract Share this page

Abstract Most methods to culture cells in three dimensions depend on a cell-seedable biomaterial to define the global structure of the culture and the microenvironment of the cells. Efforts to tailor these scaffolds have focused on the chemical and mechanical properties of the biomaterial itself. Here, we present a strategy to control the distributions of soluble chemicals within the scaffold with convective mass transfer via microfluidic networks embedded directly within the cell-seeded biomaterial. Our presentation of this strategy includes: a lithographic technique to build functional microfluidic structures within a calcium alginate hydrogel seeded with cells; characterization of this process with respect to microstructural fidelity and cell viability; characterization of convective and diffusive mass transfer of small and large solutes within this microfluidic scaffold; and demonstration of temporal and spatial control of the distribution of non-reactive solutes and reactive solutes (that is, metabolites) within the bulk of the scaffold. This approach to control the chemical environment on a micrometre scale within a macroscopic scaffold could aid in engineering complex tissues. This article was published in Nat Mater and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords