alexa Microglia in the olfactory bulb of rats during postnatal development and olfactory nerve injury with zinc sulfate: a lectin labeling and ultrastrucutural study.


Journal of Alzheimers Disease & Parkinsonism

Author(s): Chang CY, Chien HF, Jiangshieh YF, Wu CH

Abstract Share this page

Abstract Using isolectin (GSA I-B4) as a marker, this study examined the possible alterations of lectin-labeled membranous glycoproteins in microglial cells in the olfactory bulb of normal development and under experimentally induced degeneration. In light microscopy, several morphological types of microglial cells representing different degrees of cell differentiation were distributed in the bulb laminae. A gradient of microglial differentiation extending from the intermediate to superficial and intermediate to deep occurs in the bulb layers. The differentiation gradient and lectin labeling pattern of microglial cells in the developing bulb resembled those in other areas of the brain tissues. Differentiating microglia showed a gradual diminution of lectin staining when the nascent round cells transformed into the mature ramified cells. Microglia in the external plexiform layer of the olfactory bulb were the first to mature and the cells expressed very weak lectin reactivity. In mature or adult rats, some microglial cells showing intense lectin labeling were observed in the olfactory nerve layer, granule cell layer and subependymal layer. Ultrastructurally, lectin labeling was localized at the trans saccules of the Golgi apparatus. Microglial cells in other bulb laminae, however, exhibited a negative reaction for the isolectin at the Golgi apparatus. Following intranasal irrigation of zinc sulfate, some microglial cells in the olfactory nerve layer and glomerular layer were activated to become phagocytic cells with increased lectin labeling at their ramified processes. GSA I-B4 staining was also localized at their trans saccules of the Golgi apparatus. The lectin labeling pattern of these phagocytic cells resembled that of differentiating microglia in postnatal bulbs, suggesting that bulb microglia in the lesioned sites were activated through cell dedifferentiation into macrophages.
This article was published in Neurosci Res and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version